Postdoc Position in Dutch Institute for Fundamental Energy Research (DIFFER), Netherlands

0
1090
Energy Research

Designation/Position- Postdoc Position

Dutch Institute for Fundamental Energy Research (DIFFER), Netherlands invites application for postdoc position from candidates having PhD degree in chemistry, physics, materials science or a closely related field. 

About- DIFFER (Dutch Institute for Fundamental Energy Research) is one of the Netherlands Organisation for Scientific Research (NWO) institutes and focuses on a multidisciplinary approach to energy research, combining physics, chemistry, engineering and materials science. The institute is based on two main strands, solar fuels for the conversion and storage of renewable energy and fusion-energy as clean and unlimited source of energy. DIFFER is developing and supporting a national network on fundamental energy research and is closely collaborating with academic institutions, research institutes and industry. As of 2015 the institute is located in a new building at the campus of Eindhoven University of Technology (TU/e).

The present vacancy is for a shared Postdoc position between the Nanoscale Solar Cells group of prof. Erik Garnett at AMOLF (Amsterdam) and the Nanomaterials for Energy Applications group of dr. Andrea Baldi at DIFFER (Eindhoven).

Location- Dutch Institute for Fundamental Energy Research (DIFFER), Netherlands

Research/Job Area- Chemistry, Physics, Materials Science or a closely related field

Project Title- Direct Versus Indirect Mechanism of Plasmon-Driven Catalysis

Eligibility/Qualification- Research group seek an outstanding candidate that is willing to work in an international and interdisciplinary team of chemists  and physicists. You should have a recent PhD degree in chemistry, physics, materials science or a closely related field. Prior experience in nanoparticle synthesis or optical microscopy and spectroscopy is not required, but is considered a plus. You should be willing to split your working schedule between DIFFER (Eindhoven) and AMOLF (Amsterdam), which will necessarily involve some commuting time (see www.ns.nl for scheduling and commuting times). Of course, we expect you to have excellent verbal and written communication skills in English.

Job/Position Description- One of the most significant recent developments in the field of photocatalysis is the use of light-driven plasmon resonances to optically tune the activity of heterogeneous catalysts. Plasmon resonances can activate specific catalytic pathways via two different non-thermal mechanisms:

  1. Generation and injection of hot charge carriers into molecular adsorbates, or indirect mechanism.
  2. Promotion of an electron from the metal to an empty molecular orbital of the adsorbate, or directmechanism.

The indirect mechanism suffers from low quantum efficiency due to ultrafast relaxation of the hot charge carriers and can therefore only promote charge transfer to electronic states close to the metal Fermi energy. On the contrary, and crucially from a catalysis perspective, the direct mechanism bypasses electron-electron scattering and has the promise of reaching much higher and technologically relevant efficiencies. Distinguishing between the indirect and direct mechanisms is however very challenging and we still miss a conclusive experimental demonstration of the direct transfer from a plasmonically excited particle to an empty molecular orbital at its surface. Such lack of clear experimental evidence has undermined any attempt at elucidating the physical mechanism of direct charge transfer and therefore at exploiting it for potential applications.

The present research project tackles this fundamental question and aims at demonstrating experimentally the nature of plasmon-induced electron transfer in catalytic reactions. The key ingredient will be the rational tuning of the plasmon resonance of the metal nanoparticles with respect to the molecular electronic states at their surface. The electron transfer process will be studied by measuring the linewidth broadening of the plasmon resonance in individual nanoparticles as well as the spectroscopic signature of chemical products, using single-particle techniques such as dark-field scattering spectroscopy (DIFFER), surface enhanced Raman spectroscopy (DIFFER), single particle absorption spectroscopy (AMOLF), and cathodoluminescence spectroscopy (AMOLF).

Responsibilities and tasks: 

The proposed project is a collaboration between the Nanomaterials for Energy Applications group of dr. Andrea Baldi and the Nanoscale Solar Cells group of prof. Erik Garnett. As such, part of your responsibility will be to coordinate the joint experimental efforts between the two groups. The research tasks are highly interdisciplinary, ranging from nanophotonics modeling, to optical microscopy and spectroscopy, to the characterisation of catalytic reactions in flow cells. In particular, you will:

  • Design optimal particle/adsorbate couples to study plasmon-driven electron transfer processes.
  • Synthesise the desired plasmonic nanoastructures, either colloidally or via lithographic methods.
  • Characterise the plasmon resonance linewidth in presence and absence of the molecular adsorbate, using single particle spectroscopy techniques.
  • Assist in the coordination and supervision of PhD, master, and bachelor students.
  • Write scientific publications and present your work at national and international conferences.

How to Apply- In case you are interested you can apply by submitting an application letter and a full resume. Please refer to vacancy 18.011. The letter of application may be sent electronically to: [email protected].

Last Date for Apply August 31, 2018

Click here to see details-

Click Here for Official Website-

TWAS-UPM Postdoctoral Fellowship Programme in Universiti Putra Malaysia (UPM)

PhD Position – 2018 in Delft University of Technology, Netherlands

Postdoc position in Swiss Federal Laboratories (EMPA), Switzerland

Intermediate Fellowships in Wellcome Trust/DBT India Alliance, India

LEAVE A REPLY

Please enter your comment!
Please enter your name here